

CENER

ADItech

INFORME DE ENSAYO TEST REPORT LABORATORIO ENSAYOS SOLARES TÉRMICOS SOLAR THERMAL TESTING LABORATORY

Captador Solar Hibrido PVT

Solar Hybrid PVT Collector

PVT-SWAW-16PS FEGEN SOLAR

Retrofit Kit with Full White PV panel

Informe de Ensayo de Rendimiento según norma ISO 9806:2017, apartados 19-27 Performance test Report according to ISO 9806:2017, section 19-27

* Los ensayos/actividades marcadas no están amparados por el alcance de la acreditación ENAC *Marked tests or activities are not included in the ENAC accreditation scope

> **FUNDACIÓN CENER - CIEMAT** Laboratorio de Ensayos Solares Térmicos (LEST) *Solar Thermal Testing Laboratory (LEST)* Avda. Ciudad de la Innovación, nº 7 31621 Sarriguren-Navarra

Informe / Test report nº: 30.3506.0-003 Anexo 6

3.3. Informe de rendimiento térmico / Thermal performance reporting

3.3.1. Coeficientes medidos para el cálculo de la producción térmica

Measured coefficients for the calculation of the thermal output

Basado en el área total Based on gross area					
	Valor / Value	Incertidumbre expandida Exp. uncertainty	Unidades <i>Units</i>		
$oldsymbol{\eta}_{0,hem}$	0,408	± 0,003			
$oldsymbol{\eta}_{Ob}$	0,411	± 0,003			
K _d	0,96	± 0,02			
b ₀	0,21	± 0,01			
a ₁	17,32	± 0,24	W/m ² K		
a ₂	0,025	± 0,011	$W/(m^2 \cdot K^2)$		
a3	2,515	± 0,104	J/(m ³ ·K)		
a4	0				
a 5	25.672	± 843	J/(m ² ·K)		
a ₆	0		s/m		
a 7	0,60	± 0,08	s/m		
a ₈	0		$W/(m^2 \cdot K^4)$		
C/A	25.672	± 843	J/(m ² ·K)		
Caudal nominal durante las medidas Nominal flowrate during the measurement:		120 kg/h			
$oldsymbol{\eta}_{0, ext{hem}}$ se calcula usando $oldsymbol{\eta}_{0, ext{b}}$. (0,85 + 0,15 $K_ ext{d}$)					

 $\eta_{0,hem}$ is calculated using $\eta_{0,b}$. (0,85 + 0,15 K_d)

 b_0 : constante para el cálculo del modificador del ángulo de incidencia según la formula *I* constant for the calculation of the incident angle modifier according to the formula: $K_{db} = 1 - b_0 \left(\frac{1}{\cos\theta} - 1\right)$

La curva de eficiencia instantánea basado en el área total del captador será de la siguiente forma:

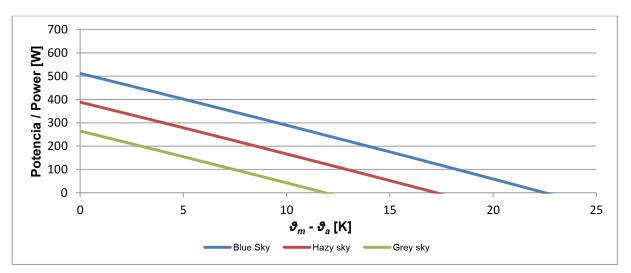
The instantaneous efficiency curve based on the collector's total area will be as follows:

$$\frac{\mathsf{Q}}{\mathsf{A}_{\mathsf{G}}} = \begin{bmatrix} \eta_{0,\mathsf{hem}} \mathsf{G}_{\mathsf{hem}} - \mathsf{a}_{1}(\vartheta_{\mathsf{m}} - \vartheta_{a}) - \mathsf{a}_{2}(\vartheta_{\mathsf{m}} - \vartheta_{a})^{2} - \mathsf{a}_{3}\mathsf{u}(\vartheta_{\mathsf{m}} - \vartheta_{a}) + \\ \mathsf{a}_{4} \big(\mathsf{E}_{\mathsf{L}} - \mathsf{T}_{a}^{4}\big) - \mathsf{a}_{6}\mathsf{u}\mathsf{G}_{\mathsf{hem}} - \mathsf{a}_{7}\mathsf{u} \big(\mathsf{E}_{\mathsf{L}} - \mathsf{T}_{a}^{4}\big) - \mathsf{a}_{8}(\vartheta_{\mathsf{m}} - \vartheta_{a})^{4} \end{bmatrix}$$

Para captadores WISC, el parámetro a_8 se fija a 0. Además los parámetros a_4 and a_6 no tenían significado estadística [es decir la relación T-ratio (valor del parámetro / desviación estándar del valor del parámetro) <3], así que estos parámetros se fijaron a 0 y la identificación del parámetro se repitió.

For WISC collectors, parameter a_8 is set to 0. In addition, parameters a_4 and a_6 had no statistical significance [ie the T-ratio ratio (parameter value / standard deviation of the parameter value) <3], so this parameter is set to 0 and the parameter identification is repeated.

3.3.2. Potencia por unidad de captador / Power output per collector unit


Potencia pico por unidad de captador Q _{peak}	512 W
Peak power per collector unit Q _{peak}	512 VV

Potencia producida por unidad de captador / Power output per collector unit (W)

ϑ _m – ϑ _a (K)	Blue sky		Hazy sky	Grey sky
-10	726		603	479
0	512		389	265
10	290		166	42
20	59		0	0
30	0		0	0
40	0		0	0
50	0		0	0
60	0		0	0
Caudal nominal durante la medida Nominal flowrate during the measurement:		120 kg/h		

Potencia producida por unidad de captador

Power output per collector unit

